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Development of State of the Science SOA Models

•CMAQ model is often used for 

regulatory decision making in a 

relative sense (for ozone, SO2, etc)

•Current regulatory uses do not 

specifically focus on SOA

ïLarge uncertainties in anthropogenically 

dominated locations

ïMore mechanistic information known in 

BVOC dominated locations (such as the 

southeast United States)

•Future lower PM2.5 NAAQS, 

component specific PM2.5 standards, 

or climate relevant work could require 

mechanistic SOA models
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SOA Predictions During 

CalNex 2010
(Woody et al. 2015 ACPD)
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Traditional BVOC+NO3 OA model

Monoterpenes: Carlton et al. 2010 ES&T

Isoprene: v5.1 unpublished
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Revised organic nitrogen SOA model
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Benefits of framework:

Å Allows interaction of aerosol system with 

gas system (implications for NOx, ozone)

Å Provides more opportunities for 

evaluation

Aerosol 

Organic 

Nitrate
Gas organic nitrate

deposition

Photolysis or 

chemical reaction

deposition

BVOC + NO3

BVOC + OH, NO

NOx

Hydrolysis t=3 hr
for tertiary nitrates 

(Boyd et al. 2015 ACP)

HNO3

+ 

Organic

HNO3

deposition

b
a

Semivolatile ON sources considered:

Å Monoterpene + OH, NO

Å Monoterpene + NO3

Å Isoprene + NO3 dinitrate only

Pye et al. 2015 ES&T



O3 is the dominant nocturnal oxidant
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*

TERP Oxidation



NO3 is the dominant ON source
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MTNO3 Production

* CIMS signal is one subset of MTNO3

*

TERP Oxidation



OC predicted at CTR June 2013

Base v5.1-beta Revised w/ thydrolysis=30 hr Revised w/ thydrolysis=3 hr
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Observations

CMAQ 

Observations

CMAQ 

Bias in OA vs AMS: -23% 

(-1.26 mg/m3)

Bias in OA vs AMS: -35% 

(-1.93 mg/m3)

Local Hour Local Hour



Faster hydrolysis consistent with observations
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•Increasing the hydrolysis rate 

increases the magnitude of 

modeled LO-OOA

LO-OOA



Faster hydrolysis consistent with observations

•Faster hydrolysis improves 

the speciation of LO-OOA
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Faster hydrolysis consistent with observations

•Faster hydrolysis improves 

the speciation of LO-OOA
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•Increasing the hydrolysis rate 

increases the magnitude of 

modeled LO-OOA

•Faster hydrolysis improves 

the magnitude of gas-phase 

organic nitrates

(c) ON

LO-OOA



Faster hydrolysis consistent with observations

•Faster hydrolysis improves 

the speciation of LO-OOA
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•Increasing the hydrolysis rate 

increases the magnitude of 

modeled LO-OOA

•Faster hydrolysis improves 

the magnitude of gas-phase 

organic nitrates

40% of LO-OOA not accounted for

(c) ON

LO-OOA



IEPOX SOA

•Included in all research and regulatory mechanisms of CMAQ as of v5.1

•Modeled as reactive uptake (Pye et al. 2013 ES&T)
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CMAQ Predictions of IEPOX-OA
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ÅCMAQ predictions reproduce the observed correlation with sulfate
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Modeling of the SOAS-LRK Site
Budisulistiorini et al. in prep
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simpleGAMMA: Woo and McNeill 2015 GMD

Å Models reproduce observed correlation of IEPOX-derived species (tetrols+organosulfates) with 

aerosol volume and surface area and lack of correlation kparticle



NOx emission reduction leads to OA reduction

17 Pye et al. 2015 ES&T



SOx Emission Reduction Leads to Isoprene SOA Reduction
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Budisulistiorini et al. in prep.

Marais et al. 2015 isoprene-OA 

58% from IEPOX

28% from glyoxal

Pye et al. 2013 isoprene-OA 

includes semivolatile and 

aqueous IEPOX SOA



Conclusions

•Mechanistic SOA parametrizations give us confidence in the predictive 

capability of models

•For organic nitrate-derived SOA, gas-phase mechanisms should couple with 

aerosol-phase mechanisms 

•CMAQ model predictions are consistent with SOAS observations of NOy

components when particle phase organic nitrates undergo fast reaction (3 h)

•Significant progress has been made in modeling isoprene-OA, but 

uncertainties exist (e.g. the composition of the isoprene-OA factor)

•NOx and SOx emission reductions in the Southeast are expected to reduce 

SOA
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